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Problem 4.3

(a) Suppose ψ(r, θ, ϕ) = Ae−r/a, for some constants A and a. Find E and V (r), assuming
V (r) → 0 as r → ∞.

(b) Do the same for ψ(r, θ, ϕ) = Ae−r2/a2 , assuming V (0) = 0.

[TYPO: Write the end of footnote 3 on page 134 as “Some authors now switch to M or µ for
mass, but I hate to change notation in midstream. And I don’t think confusion will arise as long
as you are aware of the problem.”]

Solution

For a spherically symmetric wave function and a spherically symmetric time-independent
potential energy function, Schrödinger’s equation becomes
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Because it’s linear and homogeneous, the method of separation of variables can be applied:
Assume a product solution of the form Ψ(r, t) = ψ(r)T (t) and plug it into the PDE.
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Divide both sides by ψ(r)T (t) in order to separate variables.

iℏ
T ′(t)

T (t)
= − ℏ2

2m

1

r2ψ(r)

d

dr

(
r2
dψ

dr

)
+ V (r)

The only way a function of t can be equal to a function of r is if both are equal to a constant.
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As a result of separating variables, the PDE has reduced to two ODEs—one in t and one in r.
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Solve this second equation for the potential energy function.
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Part (a)

If ψ(r) = Ae−r/a, then
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Use the fact that V (r) → 0 as r → ∞ to determine E.
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Part (b)

If ψ(r) = Ae−r2/a2 , then
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Use the fact that V (0) = 0 to determine E.

lim
r→0

V (r) = E − ℏ2

ma2
(3) = 0 → E =

3ℏ2

ma2

Therefore,

V (r) =
3ℏ2

ma2
− ℏ2

ma2

(
3− 2

r2

a2

)

=
2ℏ2

ma4
r2.

www.stemjock.com


