Problem 4.3

(a) Suppose $\psi(r, \theta, \phi)=A e^{-r / a}$, for some constants A and a. Find E and $V(r)$, assuming $V(r) \rightarrow 0$ as $r \rightarrow \infty$.
(b) Do the same for $\psi(r, \theta, \phi)=A e^{-r^{2} / a^{2}}$, assuming $V(0)=0$.
[TYPO: Write the end of footnote 3 on page 134 as "Some authors now switch to M or μ for mass, but I hate to change notation in midstream. And I don't think confusion will arise as long as you are aware of the problem."]

Solution

For a spherically symmetric wave function and a spherically symmetric time-independent potential energy function, Schrödinger's equation becomes

$$
\begin{aligned}
i \hbar \frac{\partial \Psi}{\partial t} & =-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V(r) \Psi(r, t) \\
& =-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Psi}{\partial r}\right)+V(r) \Psi(r, t)
\end{aligned}
$$

Because it's linear and homogeneous, the method of separation of variables can be applied: Assume a product solution of the form $\Psi(r, t)=\psi(r) T(t)$ and plug it into the PDE.

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t}[\psi(r) T(t)] & =-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \frac{\partial}{\partial r}[\psi(r) T(t)]\right]+V(r)[\psi(r) T(t)] \\
i \hbar \psi(r) T^{\prime}(t) & =-\frac{\hbar^{2}}{2 m} \frac{T(t)}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)+V(r)[\psi(r) T(t)]
\end{aligned}
$$

Divide both sides by $\psi(r) T(t)$ in order to separate variables.

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} \psi(r)} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)+V(r)
$$

The only way a function of t can be equal to a function of r is if both are equal to a constant.

$$
i \hbar \frac{T^{\prime}(t)}{T(t)}=-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} \psi(r)} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)+V(r)=E
$$

As a result of separating variables, the PDE has reduced to two ODEs - one in t and one in r.

$$
\left.\begin{array}{rl}
i \hbar \frac{T^{\prime}(t)}{T(t)} & =E \\
-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} \psi(r)} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)+V(r) & =E
\end{array}\right\}
$$

Solve this second equation for the potential energy function.

$$
V(r)=E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} \psi(r)} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)
$$

$\underline{\text { Part (a) }}$

If $\psi(r)=A e^{-r / a}$, then

$$
\begin{aligned}
V(r) & =E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} \psi(r)} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right) \\
& =E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}\left(A e^{-r / a}\right)} \frac{d}{d r}\left[r^{2} \frac{d}{d r}\left(A e^{-r / a}\right)\right] \\
& =E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}\left(A e^{-r / a}\right)} \frac{d}{d r}\left[r^{2}\left(-\frac{A}{a} e^{-r / a}\right)\right] \\
& =E-\frac{\hbar^{2}}{2 m a} \frac{1}{r^{2} e^{-r / a}} \frac{d}{d r}\left(r^{2} e^{-r / a}\right) \\
& =E-\frac{\hbar^{2}}{2 m a} \frac{1}{r^{2} e^{-r / a}}\left(2 r e^{-r / a}-\frac{r^{2}}{a} e^{-r / a}\right) \\
& =E-\frac{\hbar^{2}}{2 m a^{2}}\left(\frac{2 a}{r}-1\right) .
\end{aligned}
$$

Use the fact that $V(r) \rightarrow 0$ as $r \rightarrow \infty$ to determine E.

$$
\lim _{r \rightarrow \infty} V(r)=E-\frac{\hbar^{2}}{2 m a^{2}}(-1)=0 \quad \rightarrow \quad E=-\frac{\hbar^{2}}{2 m a^{2}}
$$

Therefore,

$$
\begin{aligned}
V(r) & =-\frac{\hbar^{2}}{2 m a^{2}}-\frac{\hbar^{2}}{2 m a^{2}}\left(\frac{2 a}{r}-1\right) \\
& =-\frac{\hbar^{2}}{m a r}
\end{aligned}
$$

Part (b)

If $\psi(r)=A e^{-r^{2} / a^{2}}$, then

$$
\begin{aligned}
V(r) & =E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} \psi(r)} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right) \\
& =E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}\left(A e^{-r^{2} / a^{2}}\right)} \frac{d}{d r}\left[r^{2} \frac{d}{d r}\left(A e^{-r^{2} / a^{2}}\right)\right] \\
& =E+\frac{\hbar^{2}}{2 m} \frac{1}{r^{2} e^{-r^{2} / a^{2}}} \frac{d}{d r}\left[r^{2}\left(-\frac{2 r}{a^{2}} e^{-r^{2} / a^{2}}\right)\right] \\
& =E-\frac{\hbar^{2}}{m a^{2}} \frac{1}{r^{2} e^{-r^{2} / a^{2}}} \frac{d}{d r}\left(r^{3} e^{-r^{2} / a^{2}}\right) \\
& =E-\frac{\hbar^{2}}{m a^{2}} \frac{1}{r^{2} e^{-r^{2} / a^{2}}}\left[r^{2}\left(3-2 \frac{r^{2}}{a^{2}}\right) e^{-r^{2} / a^{2}}\right] \\
& =E-\frac{\hbar^{2}}{m a^{2}}\left(3-2 \frac{r^{2}}{a^{2}}\right) .
\end{aligned}
$$

Use the fact that $V(0)=0$ to determine E.

$$
\lim _{r \rightarrow 0} V(r)=E-\frac{\hbar^{2}}{m a^{2}}(3)=0 \quad \rightarrow \quad E=\frac{3 \hbar^{2}}{m a^{2}}
$$

Therefore,

$$
\begin{aligned}
V(r) & =\frac{3 \hbar^{2}}{m a^{2}}-\frac{\hbar^{2}}{m a^{2}}\left(3-2 \frac{r^{2}}{a^{2}}\right) \\
& =\frac{2 \hbar^{2}}{m a^{4}} r^{2} .
\end{aligned}
$$

